Formation of Fluoren-9-ylidenesuccinonitrile by Addition of Electrogenerated -CH,CN Anions to Fluoren-9-one and Fluoren-9-ylideneacetonitrile

Chantal Degrand,*a Paul-Louis Compagnon,b and Francoise Gasquezb

a Laboratoire de Synthèse et d'Electrosynthèse Organométalliques associé au CNRS (LA 33), *Facult6 des Sciences, 6 bd. Gabriel, 21 100 Dijon, France* **^b***Laboratoire de Chimie Organique, Facult6 de Pharmacie, 27 700 Dijon, France*

When -CH_2CN anions are electrogenerated in acetonitrile addition occurs to fluoren-9-one (FIC=O) or fluoren-9-ylideneacetonitrile (FIC=CHCN) to give the dinitrile derivative FIC=C(CN) CH₂CN as the major product, whereas attempts to synthesize it **by** condensation of fluorenone and succinonitrile have failed.

The chemical synthesis of dinitrile derivatives of type **(1)** would not be expected from an aldol-type condensation of succinonitrile with an aldehyde or a ketone (path A of Scheme 1). The analogy between the Stobbe condensation' and the condensation of succinonitrile with aliphatic or aromatic aldehydes and ketones has been established.¹⁻⁴ Compounds of types (2) and (3) are obtained with Bu^tOK in Bu^tOH,⁴ path (B). Path (C) suggests a method for the preparation of the dinitriles **(1)** in acetonitrile from an aldehyde or a ketone. The addition of $\mathrm{C}\mathrm{H}_{2}\mathrm{CN}$ anions to the carbonyl compound would lead to the intermediate activated olefin **(4)** which would be further attacked by -CH_2CN . The formation of (1) according to path (C) requires that the following two conditions be fulfilled. (a) Attack by -CH_2CN should occur on the carbon atom α to the nitrile group of (4). This site of attack would be favoured if the anion *(5)* is stabilized by delocalisation. In the case of the alkenes PhRC=CHCN ($R = H$, Me, or Ph), the

attack by electrogenerated $\overline{C}H_2CN$ proceeds exclusively at the β -carbon atom.⁵⁻⁹ (b) An oxidising species should be present which allows the oxidation of the intermediate anion *(5)* to **(1).**

We have observed that both conditions are met when $\overline{C}CH_2CN$ anions are electrogenerated; addition occurs to fluoren-9-one or to **fluoren-9-ylideneacetonitrile.** The dinitrile *(6)* has been prepared in yields (isolated) of up to **43** % by the electrochemical route. In a typical procedure, azobenzene (2 mm) was reduced to its dianion at -2 V *vs.* S.C.E. (saturated calomel electrode) in MeCN-dimethylformamide **(DMF)** $(1:10)$ with a mercury pool cathode and 0.1 M Bu_4NPF_6 as supporting electrolyte, under an atmosphere of argon. This procedure generates -CH_2CN anions from the MeCN.^{5,8,10} Fluoren-9-one **(1** mM) was then added and the mixture left for **2-3** h. Two main products were identified after column chromatography: **(6)** (43%) and $(7)^{11}$ (23%) .

Scheme 2

We have discussed elsewhere¹¹ the origin of (7) when electrogenerated $\text{-CH}_2\text{CN}$ anions add to fluorenone. Attack by $-CH₂CN$ on the carbon atom β to the nitrile group of fluoren-9-ylideneacetonitrile has been suggested.¹¹ According to path (C) in Scheme 1, **(7)** can also result from cyanide elimination (Scheme **2).**

Traces of oxygen cause the oxidation of **(8)** to **(6).** The but should be in the same range as that of $FICH^{-}(E_0 =$ -0.67 V *vs.* S.C.E. in DMF¹²) or FICMe ($E_0 = -0.78$ V *vs.* S.C.E. in DMF¹³). It is therefore sufficiently negative to allow **(8)** to reduce traces of oxygen whose reduction occurs with $E_{1/2} = -0.7$ V *vs.* S.C.E. Hydrogen peroxide is probably formed.

The two following unsuccessful attempted chemical or electrochemical syntheses of **(6)** from fluorenone and succinonitrile emphasise the advantages of the electrochemical route described now. Condensation does not occur between FlC=O and succinonitrile under the conditions in ref. 14 which relate to the synthesis of $FIC(OH)CH₂CN$ and $FIC=CHCN$ from fluoren-9-one and acetonitrile in tetrahydrofuran as solvent. Similarly, condensation does not occur *via* the electrochemical route with succinonitrile-DMF **(1** : 10) as solvent.

The dinitrile *(6)* is a pale brown powder: m.p. 156 *"C* (from chloroform-hexane); δ (CDCl₃): 3.9 (s, 2H), 7.0-7.7 (m, 7H), and 8.3-8.5 (m, 1H); i.r. (KBr) v(CN) 2260w and 2210s cm⁻¹; m/z 242 $(M^{+}, 100\%)$. It has a half-wave reduction potential $E_{1/2} = -1.18$ V *vs.* S.C.E. (DMF as solvent) at a rotating disc electrode.

Received, 15th November 1982; Com. I308

References

- W. **S.** Johnson and G. H. Daub, *Org. React.,* 1951, **6,** 1, and references therein.
- P. **E.** Fanta and **S.** Smith, *J. Am. Chem. SOC.,* 1954, **76,** 2915.
- **5.** Stanek and V. Jarolim, *Chem. Listy,* 1953, **47,** 703.
- **J.** Leludec, D. Danion, and R. Carrie, *Bull. SOC. Chim. Fr.,*
- 1966, 3895.
- A. J. Bellamy, *J. Chem. Soc., Chem. Commun.,* 1975, 944.
- **A.** J. Bellamy, **G,** Howat, and I. **S.** MacKirdy, *J. Chem. Soc., Perkin Trans.* 2, 1978, 786.
- E. M. Abbot, A. J. Bellamy, and J. Kerr, *Chem. Ind. (London),* 1974, 828.
- **A.** J. Bellamy, J. B. Kerr, C. J. McGregor, and **I. S.** MacKirdy, *J. Chem. Soc., Perkin Trans.* 2, 1982, 161.
- E. M. Abbot, A. J. Bellamy, J. B. Kerr, and I. **S.** MacKirdy, *J. Chem. SOC., Perkin Trans.* 2, 1982, 425.
- 10 K. G. Boto and F. **G.** Thomas, *Aust.* J. *Chem.,* 1973,26, 1251.
- 11 C. Degrand, P.-L. Compagnon, and F. Gasquez, *J. Org. Chem.,* 1982, **47,** 4586.
- 12 K. J. Borhani and **M.** D. Hawley, J. *Electroanal. Chem. Interfacial Electrochem.,* 1979, 101, 407.
- 13 C. Nuntnarumit and M. D. Hawley, J. *Electroanal. Chem. Interfacial Electrochem.,* 1982, 133, 57.
- 14 E. M. Kaiser and *C.* R. Hauser, *J. Org. Chem.,* 1968,33, 3402.